
PAPERS
M. Inui, T. Hamasaki, and M. Van Der Veen, “Intermodulation Distortion Analysis
of a Guitar Distortion Pedal With a Starving Circuit”
J. Audio Eng. Soc., vol. 69, no. 1/2, pp. 80–103, (2021 January/February).
DOI: https://doi.org/10.17743/jaes.2020.0068

Intermodulation Distortion Analysis of a Guitar
Distortion Pedal With a Starving Circuit

MASAKI INUI,
1

AES Student Member
(da20001@cc.it-hiroshima.ac.jp)

,

TOSHIHIKO HAMASAKI,
1

AES Member
(t.hamasaki.rs@it-hiroshima.ac.jp)

AND MENNO VAN DER VEEN,
2

AES Member
(info@mennovanderveen.nl)

1Information Systems and Science, Graduate School of Science and Technology, Hiroshima Institute of Technology,
Hiroshima, 731-5193, Japan

2Ir. Bureau Vanderveen, 8743KZ 18, Hichtum, The Netherlands

Despite the recent trend of digital transformation in the music industry, the popularity of
guitar effects pedals (GEPs) designed with analog components has not declined. This paper
describes the complexity of the nonlinear characteristics of the analog circuitry in a distortion
pedal, which originates not only from clipping diodes but also from the integrated operational
amplifier itself. It is well known that variation in the supply voltage of a distortion pedal
influences its sound. Based on this phenomenon, we have designed a voltage-starving circuit
to control various distorted transfer functions depending on the frequency. Particular attention
is given to the difference between odd and even nonlinearity in the mechanism of generating
intermodulation distortion (IMD) for two-tone dissonance and consonance. These transfer
functions are analyzed in detail using a 9th-order polynomial approximation. As a result, all
peaks of the intermodulation frequencies are successfully identified in a complex spectrum.
Furthermore the spectral shape of the measured IMD peaks is reproduced with an error of less
than 50 dB by the simulation of their approximate formula.

0 INTRODUCTION

The main objective of this study is to investigate the vari-
ation in the even-order harmonics of ‘distortion’ pedals.
Basically, the harmonics of the distorted sound originate
from the circuit topology as well as physical characteristics
of the active and passive devices, such as the semiconductor
materials used. In the mid-to-late 1960s, the first circuits
for guitar effects pedals (GEPs) were developed in the form
of fuzz circuits, such as “Tone Bender MKI” and “Fuzz
Face” in 1965 and 1966, respectively, and in the form of
frequency booster “Rangemaster” in 1966. A germanium
PNP bipolar junction transistor (BJT) was implemented as
a core device for both types of circuits. A fuzz circuit is sim-
ilar to a common-emitter two-stage high-gain amplifier, but
it includes feedback from the emitter of the second transis-
tor to the input base terminal of the first transistor via a
resistor. The feedback voltage is controlled by a frequency-

dependent variable emitter resistance. As a result of this
feedback, the output wave shape becomes rich in asymmet-
ric even-order harmonics, with a tall rectangular pulse. In a
frequency booster, the bias of the input node of the PNP BJT
is shifted by a voltage divider below the middle point of the
supply voltage rail, which creates an asymmetric-shaped
output wave shape. In a later product of “Zonk Machine
II,” the PNP BJTs were replaced with silicon. Because of
the simplicity of the circuit diagrams for these products, it
can be expected that their sound characteristics will be sen-
sitive to manufacturing deviations, especially with regard
to the properties of the BJTs, which can be represented by
a family of curves of the collector current vs. the emitter-
collector voltage. Additionally the supply voltage rejection
ratio is likely to be quite low in these circuits; therefore the
voltage starvation technique will be very effective.

While fuzz and frequency booster circuits were undergo-
ing a series of modifications, the first series of operational
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amplifiers (OPAs) was developed in the same decade, the
famous series of μA702, 709, 723, and 741, and then in
1974, the first OPA-based distortion pedal “M104, Distor-
tion +” came onto the market. This distortion pedal con-
sisted of a noninverting OPA, a clipping circuit with an-
tiparallel germanium diodes, and a resistor-capacitor (RC)
low-pass filter. Later, in the 1980s, an overdrive pedal “Tube
Screamer, TS808” was developed by inserting silicon an-
tiparallel diodes into the OPA feedback circuit, enabling
the generation of a symmetric output, equal to the first
OPA-based distortion pedal “M104, Distortion +”.

Following this product, an asymmetric combination of
3 antiparallel diodes (2 serially connected silicon diodes
on one side and 1 inversely connected silicon diode) in
the feedback of the OPA was proposed by another manu-
facturer, named “Super Overdrive SD-1.” The idea of this
connection was to obtain an asymmetric output waveform
containing even harmonics, resulting in a significant sound
change compared with the previous design [1]. Due to the
difference in threshold voltage between silicon and germa-
nium (0.7 V or more for Si compared to 0.3 V or less for
Ge), the degree of asymmetry can be modified by replacing
1 or more silicon diodes with germanium, i.e., using com-
binations such as 2 silicon diodes + 1 germanium diode
or 2 germanium diodes + 1 silicon diode. Based on this
idea, the sound differences of overdrive pedals depending
on even harmonics have been studied in psychoacoustic
tests [2] considering various predictors of perception [3,4].
In a broad sense, the overdrive mode is recognized as one
kind of distortion mode. Therefore, in this article, we will
consider the term ‘distortion pedal’ to also encompass the
concept of ‘overdrive pedal.’

In current audio systems, the purpose of using an OPA is
to obtain linear amplification characteristics by applying a
feedback circuit. Therefore the supply voltage for an OPA
in a hi-fi audio system is typically chosen to be as high as
+/−15 V [5]. However, when an OPA is used in a distortion
or fuzz pedal, its role is essentially to increase the amplifi-
cation from a guitar pickup, and furthermore, portability is
a key requirement; therefore the supply voltage is provided
by a 9 V dry cell. It is well known by guitarists that the
distorted sound changes as the dry cell nears the end of its
life and the voltage begins to drop. This fact has led to the
conscious use of the voltage starvation technique [6,7] and
remains a topic of interest on related websites [8].

The key means of digitizing such pedals is through mod-
eling of the corresponding analog circuit blocks. The real-
time processing of some of the passive components has
currently been achieved due to the simplicity of the physi-
cal model. Additionally the saturation of nonlinearities by
means of clipping diodes in a distortion pedal can be ap-
proximated by hyperbolic functions [9,10]. On the other
hand, because of reactive factors, the digital implementa-
tion of active devices has not been completely addressed.
The major approach has been to use a small-signal equiva-
lent circuit model that directly simulates the circuit behav-
ior [11]. Recently the wave digital filter technique [12] has
been extended to analog circuit blocks [13,14]. Addition-
ally success has been achieved in the large-signal modeling

of the active circuit blocks in a frequency booster pedal.
However the OPA function was implemented as an ideal
model with no nonlinear dynamic characteristics [15].

The situation is similar for analog synthesizers, such as in
the “West Coast” tradition of analog sound synthesis, which
relies on wavefolders for sound generation. The core of a
wavefolder circuit consists of an NPN BJT and a PNP BJT,
which can be digitized by means of large-signal equivalent
circuits [16]. It should be noted that these “virtual analog”
models have been achieved by assuming symmetric nonlin-
ear (i.e., with odd-order harmonics) transfer functions. On
the other hand a black box approach based on deep learning
has been proposed for the real-time processing of nonlinear
transfer characteristics [17,18]. Although these latest meth-
ods are considered to be among the most useful tools for
advancing digitization, certain aspects of their applicabil-
ity, such as the reproducibility of harmonics for complex
analog signal processing modes, are yet unknown.

At the AES convention in 2017, the authors’ group pre-
sented the ability to control the even-order harmonics of
an OPA-based distortion pedal by means of voltage star-
vation associated with the gain [19]. The next year we
demonstrated a supply-voltage-starving control circuit with
a DC/DC converter for searching for the effective voltage
range for sound changes due to intermodulation distortion
(IMD) [20]. However, a means of simultaneously achiev-
ing the virtual analog modeling of both odd-order and even-
order harmonics has not yet been found. The unsolved prob-
lems include the complexity of the large-signal nonlinear
behavior arising from the complexity of the starved OPA.

Therefore the purposes of this research are as follows.
First, we wish to clarify the cause of the starvation effect in
the OPA and achieve stable reproduction thereof by reverse
engineering the internal circuitry of the OPA. Second, we
wish to characterize the dependence of both the odd-order
and even-order distortion on the starvation voltage in a pro-
totype distortion pedal and obtain a mathematical model
that is relatively easy to digitally process to describe the
transfer characteristics. Third, we wish to determine the er-
ror tolerance of the model simulations for IMD, for which
the differences in the distortion components are more audi-
ble than those in a single-tone case, under various settings
of the distortion pedal. Fourth, we believe that the distortion
pedal created in this study will facilitate more quantitative
discussion and validation of the results of statistical psy-
choacoustic tests for sounds rich in even-order harmonics,
as discussed in reference [2].

This paper is organized as follows. In Sec. 1, we de-
scribe the mechanism of even-harmonic generation using
the fundamental distortion circuitry associated with sim-
plified schematics of an OPA. The system configuration of
the developed distortion pedal, including the power man-
agement circuitry for voltage starvation, is described in Sec.
2. In Sec. 3, the experimental setups and measurement con-
ditions are introduced. The fundamental response of the
distortion pedal is presented in Sec. 4, including the starva-
tion effect. In Sec. 5, the transfer characteristics of a one-
tone signal under various distortion conditions are demon-
strated by comparing measurements and simulations with a
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polynomial approximation as a reference. Subsequently, the
intermodulation spectra of two-tone signals are discussed
in detail in Sec. 6. Finally, Sec. 7 presents the conclusion
and discusses future research.

1 MECHANISM OF NONLINEAR OPA
OPERATION IN A DISTORTION PEDAL

We studied the circuit diagrams of more than 40 distor-
tion and overdrive pedals, including those listed in Dave
Hunter’s handbook [21]. OPAs with noninverting connec-
tions are utilized in this sound category; the NJM4558 is
especially popular [22]. To clarify the generation mecha-
nisms of even-harmonic and odd-harmonic distortion, we
evaluated a fundamental circuit consisting of a high-gain
noninverting OPA (NJM4558), antiparallel clipping diodes,
and an RC filter in series, as shown in Fig. 1.

As shown in the inset photograph on the left-hand side, an
asymmetric (even-harmonic) distortion of the plus/minus
period is observed in the pulsed waveform at the output of
the OPA, which is clipped to 4.37 Vp−p for a 200 mVp−p

input with a 9 V power supply. The pulsed signal is clipped
again to 1.07 Vp−p by the bidirectional diodes while main-
taining the asymmetry ratio, as shown in the photograph on
the right-hand side. This observation motivated the research
presented in this paper on the development of a system for
controlling both even and odd harmonics with voltage star-
vation [19].

To confirm that this phenomenon can be stably repro-
duced, the change in the total current of the OPA with
respect to the voltage starvation was measured. Ten OPAs
in total were measured, which were obtained through differ-
ent sales channels (A, B and C) and stamped with different
manufacturing lot numbers. The supply voltage Vcc was
varied from 0 V to 9 V in 0.1 V increments, from 9 V
to 12 V in 0.4 V increments, and then down to 0 V in
the same voltage increments as in the upward case in each
supply voltage range. Additionally the measurements were
performed in an atmospheric temperature range of 25 to 85
degrees centigrade in the same operating state as the system
depicted in Fig. 1.

As shown in Fig. 2, the total consumed current Itotal is
almost flat in the product specification range (8 V < Vcc), al-
though it shows some deviation among the different groups
of lot numbers. For each device, the current Itotal suddenly
begins to drop with decreasing Vcc, following Ohm’s law,
at the knee point of 6.8 V. Then the current abruptly de-
creases rapidly at a Vcc of 2 V. In general, the reference
voltage for the current source circuit in a silicon integrated
circuit is provided by a Zener diode. The threshold voltage
of a silicon PN-junction Zener diode is approximately 7 V;
accordingly, it is highly possible that such a Zener diode is
installed at the right end of the circuit diagram (shown in
Fig. 3 [22]) to serve as a reference for the current source.
The ohmic region, Vcc 2 V to 6.8 V, originates from resistor
R9. The operational stability of these circuits is typically
checked in a temperature range of up to 75 degrees centi-
grade, as shown in Fig. 2(b), to ensure consumer product
quality.

As shown in the figure, the total current decreases slightly
with increasing temperature. However there is no signifi-
cant operational deterioration due to temperature. Thus the
supply voltage starving of the OPA can be qualified from
the viewpoint of functional reliability.

Therefore the phenomena observed in Fig. 1 should be
attributable to the overdrive mechanism of the noninverting
OPA connection. Based on reverse engineering of the circuit
diagram shown in Fig. 3, the mechanism of the voltage-
starving effect can be explained as follows:

The OPA is designed with integrated silicon BJT technol-
ogy and consists of four stages, as shown by the simplified
circuit diagram in Fig. 3.

1st Differential amplification Q1,2
2nd Emitter-follower buffer Q5
3rd Common-Emitter high-gain amplification Q6
4th Push-pull class AB output amplification

Q7,..,10 (current sources are not listed)

The essential point to note is the inherent asymmetry in
the third-stage circuit. This is not a problem at linear signal
levels for general applications. However, if the feedback
gain is increased to intentionally introduce distortion, this
causes asymmetry at the output. The third amplification
stage, with the NPN transistor Q6, is designed to have a
high gain with the active-load NPN transistor Q12, where
the biasing circuit for the next stage is merged. The diode-
equivalent connection of NPN transistors Q7 and Q8 with
R6 provides the emitter-base bias for NPN transistor Q9
and PNP transistor Q10 for the final push-pull class AB
amplification stage. Therefore the output signal vcq6 of NPN
Q6 for the high-gain setting of the noninverting OPA is
clipped asymmetrically because of the headroom reduction
achieved by this complicated connection of components.

Even in the virtual ground principle of the OPA for V+
and V−, the asymmetry between the sinusoidal signal in-
put at the V+ pin and the clipped signal feedback input at
the V− pin in the first differential stage is enhanced by the
nonlinear properties of the components, such as the para-
sitic capacitance of the input PNP transistors Q1 and Q2
and the biasing NPN transistor Q11. The distorted output
voltage vcq2 of Q2 is buffered by the second NPN transistor
Q5 in the emitter-follower stage when proceeding toward
the third stage. Furthermore, as mentioned in SEC. 0, the
power supply voltage of the pedal Vcc = 9 V (+/−4.5 V) is
significantly lower than the 30 V (+/−15 V) used for hi-fi
applications. As a result the asymmetry of the OPA output
swing is enlarged relative to the headroom of the supply
voltage, thus making the voltage starvation technique ef-
fective.

2 CIRCUIT DESIGN OF A
STARVATION-CONTROLLED DISTORTION PEDAL

Fig. 4 shows the circuit schematics of the newly devel-
oped distortion pedal. The signal processing chain, which
consists of three stages, is shown in (a), and the schematic
for the power management section is shown in (b). The core
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Fig. 1. Waveforms of a high-gain OPA output and a clipped node by antiparallel diodes in an “overdrive” pedal. The input signal is
200 mVp−p, 441 Hz.

of the signal processing chain is a distortion generation cir-
cuit, consisting of OPA2 and a couple of diodes along with
a 1st-order RC low-pass filter. The original gain of OPA2
and the RC constant of the filter are designed to generate
a sound effect categorized as overdrive. Voltage starving
is applied only at OPA2, while the supply voltage of the
OPA1 and OPA3 buffers is maintained at 12 V to ensure
linear operation based on the data sheet. We have discovered
that the input impedance of the OPA2 gains feedback cir-
cuitry depending on the starved voltage. To prevent sound
modulation caused by changes in the input impedance, we
add OPA1 as a high-impedance input buffer. This is an im-

provement to the previous version of this distortion pedal
presented at the 144th AES convention [20].

One additional improvement from the previous circuit
is that we have modified the reference voltage circuitry of
the NJM2392 DC/DC converter to widen the tuning range
of the audible difference. The ripple noise in the power
line from the AC adaptor is filtered out by an RC low-
pass filter, which consists of a BJT capacitance multiplier
circuit. The power for the 1st-stage buffer OPA1 and the
output buffer OPA3 is supplied directly from this output to
avoid additional distortion and noise.

Fig. 2. The total consumption current of OPAs as a function of the supply voltage measured at room temperature. Groups A, B, and C
indicate different product manufacturing lot numbers (a). The ambient temperature dependence for a typical sample device from Group
A (b).
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Fig. 3. A simplified circuit schematic of the BJT OPA NJM4558 [22].

The power supply voltage for the gain in OPA2 is pro-
vided via terminal VCC2 by an NJM2392 DC/DC con-
verter. The output voltage is monitored by variable resistor
VR4 and R11, and the voltage is fed back to change the
duty ratio of the pulse-width modulation (PWM) signal
(100 kHz) to produce the desired power supply voltage
VCC2, which ranges from 10 V down to 5 V.

Fig. 5 shows a photograph of the new distortion pedal.
The “Gain” knob (D1) controls the variable resistor VR1
to tune the gain of OPA2, as shown in (a). The “Variable
DC” knob (D2) controls the variable resistor VR4 to tune
the starved voltage VCC2 for OPA2, as shown in (b). In
this research the tone control knob, which controls variable
resistor VR2, was fixed in the zero position such that the
corner frequency of the RC filter was set to 100 kHz.

3 MEASUREMENT SYSTEM

The nonlinear transfer characteristics of the distor-
tion pedal were observed by inputting a one-tone sig-
nal and two-tone signal generated by a Keysight 35500B
waveform generator into the distortion pedal. The fre-
quency accuracy of this waveform generator is 1 µHz
in the wide band from 1 µHz to 20 MHz, and the sig-
nal amplitude is controlled by a 16-bit digital-to-analog
converter. This accuracy is sufficient to generate indi-
vidual frequencies of equal temperament and the har-
monic spectrum of the IMD of the distortion pedal
output.

The nonlinear transfer characteristic was generated by
varying both the “Gain” knob (VR1), named Distortion
1 (D1), and the “Variable DC” knob (VR4), named Dis-
tortion 2 (D2). The output power was equalized to yield
a constant perceived loudness for human ears by using
the “Level” knob (VR3) in accordance with the loud-
ness, K-weighted, relative to the full scale (LKFS) stan-
dard for both the one-tone harmonic distortion test and
two-tone IMD test. To perform the LKFS correction [23],
the output signal of the distortion pedal was monitored
with the Orban Loudness Meter V2.9.7 PC software ap-
plication [24] via a USB-connected RME Babyface Pro
AD converter. An Agilent DSO-X2024A digital storage
oscilloscope was used to sample the output waveforms in
all experiments.

First, a sine sweep analysis and an amplitude sweep anal-
ysis were performed using the continuous wavelet trans-
form (CWT) in MATLAB Wavelet Toolbox version R2019a
to determine the trend of the harmonic intensity of the out-
put waveforms. The fast Fourier transform (FFT) function
of the digital storage oscilloscope was then used for de-
tailed analysis of the spectra. In this digital oscilloscope,
the number of sampling points in a data stream is fixed to
50,000. Therefore the frequency accuracy of the spectrum
is defined by the combination of the recording time and
frequency range. Here we performed 2-second recordings
for FFT. This result corresponds to 2.5 times oversampling
for the Nyquist frequency of 5 kHz to capture the har-
monics of the major frequency band of an electric guitar,
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Fig. 4. Schematics of the developed distortion pedal: the signal processing circuit (a) and power supply management circuit (b).

which covers the maximum frequency of the keyboard pitch
C8 = 4.186 kHz.

4 FUNDAMENTAL RESPONSE OF THE
STARVATION-CONTROLLED DISTORTION PEDAL

4.1 Sine Sweep Spectrograms
To observe the frequency range of the harmonics pro-

duced by the distortion pedal, sine sweeps were performed

from 20 Hz to 2 kHz, covering the fundamental frequency
range of an electric guitar (82 Hz to 1.175 kHz) with stan-
dard tuning. Fig. 6(a), (b), (c), (d), and (e) show the sine
sweep spectrograms for distortion knob scale settings of
‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 =
50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100,’ respec-
tively. In the shaded region outside the dashed black line in
each panel, the information in the spectrogram should be
treated as suspect due to the potential for edge effects [25].
The LKFS correction was applied for each distortion knob
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condition based on the average amplitude during the sine
sweep, while the input signal amplitude was fixed to 400
mVp-p.

In the case of the no-effect condition ‘D1 = 0, D2 = 0’
panel (a), even-order (2nd and 4th) harmonics are observed
in addition to odd-order (3rd and 5th) harmonics. With a
voltage starvation of D2 = 100, as seen in panel (b), the
strength of the even-order harmonics becomes greater than
that of the odd-order harmonics. A similar graph is observed
when ‘D1 = 50, D2 = 50,’ shown in panel (c). This panel
indicates that the asymmetry of the OPA increases with the
gain D1 as well as the supply voltage starvation D2. When
the gain of the OPA is increased to D1 = 100 with D2 = 0, as
seen in panel (d), the strength of the even-order harmonics
increases, while when the supply voltage starvation is also
increased to D2 = 100, the odd-order harmonics decrease
and almost vanish, as seen in panel (e).

4.2 Amplitude Sweep Spectrograms
Amplitude sweeps were performed from 50 mVp-p to

800 mVp-p for a sinusoidal wave with a concert pitch of
A = 440 Hz. The maximum voltage of 800 mVp-p was
determined from measurements using open E chords of a
bridge humbucker under hard picking.

Fig. 7(a), (b), (c), (d), and (e) show the amplitude sweep
spectrograms for distortion knob scale settings of ‘D1 = 0,
D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 = 50,’ ‘D1
= 100, D2 = 0,’ ‘D1 = 100, D2 = 100,’ and ‘D1 = 100,
D2 = 100,’ respectively. The LKFS correction was applied
over the entire sweep range based on an amplitude of 400
mVp-p for each distortion knob condition. A strong input
amplitude dependence is observed in the panels showing
the ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ and ‘D1 = 50,
D2 = 50’ cases. Note that in the ‘D1 = 0, D2 = 0’ panel
(a), the 2nd-order harmonics increase with an increasing
input amplitude, as do the 3rd-order harmonics, and the
4th-order harmonics are observed at amplitudes larger than
approximately 250 mVp-p.

For the maximum voltage starvation case of ‘D1 = 0,
D2 = 100’ shown in panel (b), the 3rd-order harmonics are
decreased at amplitudes above 300 mVp-p, while the even-
order harmonics are increased. A similar trend can be seen
in panel (c), where the output is increased by the OPA gain,
since the D1 knob is set to 50 in this case. Here the D2 knob
is also set to 50, and although the degree of power supply
starvation is less than that in panel (a), the headroom of the
internal 3rd high-gain stage is further reduced in response to
the input amplitude of the 1st differential stage of the OPA.

On the other hand, as shown in panels (d) and (e), the
two cases with D1 = 100 show almost no amplitude de-
pendence. This result indicates that regardless of the input
amplitude, a very high gain (D1 = 100) causes internal
hard clipping by the supply voltage rails in the 4th and 3rd

stages of the gain OPA. The strength of the even-order (2nd

and 4th) harmonics is very high compared to that of the
odd-order (3rd and 5th) harmonics; for ‘D1 = 100, D2 =
100,’ the even-order harmonics are dominant, whereas the
strength of the odd-order harmonics is very weak.

Fig. 5. The newly fabricated distortion pedal has 4 knobs: “Gain,”
“Tone,” “Level,” and a “Variable DC” knob that controls the feed-
back resistance VR4. The variation in distortion is controlled by a
combination of the “Gain” knob D1 and “Variable DC” knob D2.

5 TRANSFER FUNCTION OBTAINED FOR
ONE-TONE HARMONIC DISTORTION

5.1 Transfer Function Measurement
Fig. 8(a) shows the transfer characteristics with the dis-

tortion knob scale setting ‘D1 = 0, D2 = 0’ for the one-tone
concert pitch 440 Hz. Strong hysteresis is observed, which
suggests phase differences between upward and downward
transfer characteristics. The hysteresis depends on the sig-
nal frequency and is reduced to almost null by decreasing
the frequency to 297 Hz, thus compensating for the phase
differences, as shown in Fig. 8(b). Therefore this curve is
considered to represent the transfer function for the specific
distortion condition of ‘D1 = 0, D2 = 0.’ Thus, based on the
superposition principle for linear systems, the transfer func-
tion can be represented by a polynomial approximation that
is thought to make real-time processing easier compared to
the numerical methods introduced in SEC. 0.

5.2 Polynomial Approximation of the Transfer
Function

To express the nonlinear transfer function with a memory
effect such as IM3 in a radio frequency (RF) amplifier, the
Volterra series is considered to be a superior approximation
[26]. However, as mentioned in the previous section, the
phase compensated transfer function can be approximated
by an adequate order of polynomial function. Eq. (1) shows
a third order polynomial as an example:

Vout = K1Vin + K2(Vin)2 + K3(Vin)3 (1)

Eq. (2) is given for a one-tone signal with an angular
frequency of ω1.

Vin = Acos ω1t (2)
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Fig. 6. The sine sweep spectrogram for distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 = 50,’
‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ in (a), (b), (c), (d), and (e), respectively. Outside the dashed black line in the shaded
region, information in the spectrogram should be treated as suspect due to the potential for edge effects [25].
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Fig. 7. The amplitude sweep spectrogram for distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 =
50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ in (a), (b), (c), (d), and (e), respectively. In the shaded region, information in the
spectrogram should be treated as suspect because of the potential for edge effects [25].
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Fig. 8. Transfer characteristics of the default settings of distortion
knob scales ‘D1 = 0, D2 = 0’ for a one-tone concert pitch A =
440 Hz. Phase modulated hysteresis is observed in (a), and the
phase compensated for a one-tone signal of 297 Hz is shown in
(b). The horizontal and vertical axes are the input amplitude (50
mV/div) and output amplitude (200 mV/div), respectively.

By substituting Eq. (2) into Eq. (1), Eq. (3) is obtained.

Vout = K2A2/2 + {
(K1A) + (

3K3A3/4
)}

cosω1t

+ (
K2A2/2

)
cos2ω1t + (

K3A3/4
)

cos3ω1t (3)

Higher-order terms can also be obtained similarly, and
the higher-order coefficients significantly increase in com-
plexity with an increasing power factor. When applying the
least-squares method to both curves in Fig. 8(a) and (b),
we choose a 9th-order polynomial. Thus polynomial ap-
proximation curves for the setting ‘D1 = 0, D2 = 0’ are
obtained for the 440 Hz hysteretic curve and the 297 Hz
phase-compensated curve, as shown in Fig. 9.

5.3 Measurement and Simulation
5.3.1 Default Distortion Conditions

Spectra obtained through simulation with the 440 Hz
and 297 Hz polynomial approximation functions obtained
as described above are compared with the measured spec-
tra in Fig. 10. (Note: the 440 Hz one-tone input was used
in both cases of measurement and the two transfer func-
tions were expressed as polynomial approximations.) Here

Fig. 9. Transfer characteristics for a one-tone concert pitch
A = 440 Hz (a) and for a phase-compensated one-tone signal
by decreasing the frequency to 297 Hz (b) in the case of distortion
knobs ‘D1 = 0, D2 = 0.’ The + symbol indicates measurement
data and the solid line is a curve simulated by a 9th-order polyno-
mial approximation.

the simulated spectra were obtained using the following
process in MATLAB version R2019a:

1. An input signal tone stream with 50,000 points (2 s)
was digitized to match the measurement conditions.

2. This signal stream was input into the transfer func-
tion to obtain the corresponding output signal.

3. The FFT was performed on the output signal stream.
Thus the frequency resolution of the spectrum was
truncated to 0.5 Hz; this is smaller than the human
“just-noticeable frequency difference,” which has a
constant value of approximately 1.3 Hz below a test
signal tone frequency f of 500 Hz and is equal to 1
+ 0.007f Hz above 1 kHz [27].

Fig. 11 shows the correlations between the amplitudes of
the measured and simulated harmonics down to −50 dBV.
Interestingly the 297 Hz polynomial, fitted for the phase-
compensated transfer function, reproduces the measured
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Fig. 10. Measured spectra of the distortion pedal output for an
input signal of 440 Hz and simulated spectra using a polynomial
approximation optimized by a hysteresis curve of 440 Hz (a) and
phase-compensated curve of 297 Hz (b).

Table 1. Input signal frequency of the phase compensation for
various knob value combinations of Distortion1 and

Distortion2. In the case of ‘D1 = 100, D2 = 100,’ the original
frequency of 440 Hz yields no hysteresis.

D1\D2 0 50 100

0 297 Hz 295 Hz 276 Hz
50 350 Hz 340 Hz 296 Hz
100 550 Hz 510 Hz 440 Hz

harmonic amplitudes better than the 440 Hz polynomial.
This result indicates that the amplitude modulation due to
the nonlinearity of the static transfer function is significant
for a one-tone signal. This phenomenon is also observed
under the other distortion knob settings, as presented in the
next subsection.

5.3.2 Gain and Starvation Changes
Fig. 12 illustrates similar results for ‘D1 = 100, D2 =

0’ and ‘D1 = 100, D2 = 100.’ The signal frequencies used
for phase compensation are summarized in Table 1. The

Fig. 11. Correlation of the harmonic amplitude strength between
the measured spectra of the input signal, 440 Hz, and the simulated
spectra optimized by a hysteresis curve of 440 Hz (a) and a phase-
compensated curve of 297 Hz (b). The open-circle and open-
square symbols indicate odd and even harmonics, respectively.

Distortion 1 knob, for gain, primarily controls the odd-order
harmonics by enhancing the amplitude and distortion. The
Distortion 2 knob, for voltage starvation, controls the even-
order harmonics. By comparing the differences between
Fig. 12(a) and (b) and 12(c) and (d), it can be seen that the
phase modulation is larger for odd-order nonlinearity than
for even-order nonlinearity.

6 TWO-TONE IMD

For musical instruments, IMD between multiple tones is
essential. In this section we analyze the dissonance and con-
sonance IMD spectrum by considering the transfer function
in a manner similar to that described in the previous section
for two-tone signals of 12-tone equal temperament.

Here we must correctly define Dissonance and Conso-
nance. The history of these definitions is described in de-
tail in Tenney’s text [28]. One of the earliest definitions is
called the Pythagorean scale, which is based on a sequence
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Fig. 12. Measured transfer characteristic for a one-tone concert pitch of 440 Hz and a phase-compensated polynomial curve in the case
of distortion knob scales ‘D1 = 100, D2 = 0’ (a) and ‘D1 = 100, D2 = 100’ (c). Correlation of the harmonic strength between the
measured spectra of the input signal of 440 Hz and the spectra simulated by a phase-compensated polynomial curve in the case of
distortion knob scales ‘D1 = 100, D2 = 0’ (b) and ‘D1 = 100, D2 = 100’ (d).

of tuning in perfect fourths, fifths, and octaves. For example
the interval ratio of “perfect fifth” is 3/2 = 1.5. However,
that of “12-tone equal temperament, perfect fifth” is 27/12

= 1.4983, which is not an integer ratio but is defined in
music theory as consonance. Therefore, for the purpose
of physically observing the IMD spectrum between two
tones defined by “12-tone equal temperament,” the follow-
ing “physical rule” was adopted as definitions of dissonance
and consonance [29] in page 194 of this article:

“When two musical tones are sounded at the same time,
their united sound is generally disturbed by the beats of
the upper partials, so that a greater or less part of the whole
mass of sound is broken up into pulses of tone, and the joint
effect is rough. This relation is called dissonance.”

But “There are certain determinate ratios between pitch
numbers, for which this rule suffers an exception, and either
no beats at all are formed, or at least only such as have so
little intensity that they produce no unpleasant disturbance
of the united sound. These exceptional cases are called
consonance.”

6.1 IMD for Dissonance
6.1.1 IMD Peaks Identified by Polynomial
Approximation

The dissonance between f1 = 369.99 Hz (F#4) and f2

= 587.33 Hz (D5) with a 1:1 amplitude ratio was chosen
for IMD measurements because the difference in the in-
termodulation (IM) frequencies, f2-f1 (587.33 − 369.99 =
217.34 Hz), is subjectively easy to notice. Furthermore the
frequencies of the major IMD peaks are located in the band
below 1 kHz as shown in Fig. 13, in which some key psy-
choacoustic parameters are constant values independent of
the frequency, such as the critical bandwidth, critical band
level, and just-noticeable sound change [27].

To obtain the polynomial coefficients we formulated a
combination of two angular frequencies, ω1 and ω2, as
shown in Eq. (4), and then substituted Eq. (4) into Eq. (1).

Vin= Acosω1t + Bcosω2t (4)
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Fig. 13. Measured spectra of the distortion pedal output obtained
by inputting signals f1 = 369.99 Hz (F#4) and f2 = 587.33 Hz (D5)
for distortion knob scales ‘D1 = 0, D2 = 0’ and ‘D1 = 100, D2
= 100’ in (a) and (b), respectively.

As a simple example the derivation of the IMD to the
third order is shown below (however, note that we applied
the 9th-order approximation in this research):

Vout = V0 + V11 cosω1t + V12 cosω2t
+ V21cos2ω1t + V22cos2ω2t
+V23{cos(ω1 + ω2)t
+ cos(ω2 −ω1)t} + V31cos3ω1t
+ V32cos3ω2t + V33{cos(2ω1 + ω2)t
+ cos(2ω1−ω2)t}
+ V34{cos(2ω2 + ω1)t + cos(2ω2− ω1)t}

(5-1)

where V0 = K2
(
A2 + B2

)
/2, (5-2)

V11 = (K1A) + (
3K3AB2/2

) + (
3K3A3/4

)
, (5-3)

V12 = (K1B) + (
3K3A2B/2

) + (
3K3B3/4

)
, (5-4)

V21 = K2A2/2, (5-5)

V22 = K2B2/2, (5-6)

Table 2. Some of the combinations of two-tone
frequencies, summarized in order from small

frequencies to 1,000 Hz.

Frequency [Hz] Formula

64.70 2f2-3f1

87.97 5f1-3f1

152.66 2f1-f2

217.36 f2-f1

282.06 3f2-4f1

305.33 4f1-2f2

370.03 f1

434.65 2f2-2f1

457.92 6f1-3f2

499.34 4f2-5f1

522.61 3f1-f2

587.31 f2

652.01 3f2-3f1

675.28 5f1-2f2

739.97 2f1

804.67 2f2-f1

869.37 4f2-4f1

892.64 4f1-f2

957.34 f1+f2

V23 = K2AB, (5-7)

V31 = K3A3/4, (5-8)

V32 = K3B3/4, (5-9)

V33 = 3K3A2B/4, (5-10)

V34 = 3K3AB2/4. (5-11)

As shown in Eq. (5-1)–(5-11), a very large number of
new tones appear. Table 2 summarizes some of the two-
tone frequency combinations from low frequencies to 1,000
Hz, including the 9th-order frequencies 6f1-3f2 and 4f2-5f1

and the 8th-order frequencies 5f1-3f2 and 4f2-4f1. This table
indicates that higher-order distortion peaks appear even in
the lower-frequency band.

To automatically identify the tone peaks in the measured
data, we developed a program using MATLAB. The algo-
rithm steps are listed as follows:

• Frequency = nf1 + mf2 (n + m is the order)
• n, m (−9 ∼ 9)
• Frequency > 0
• Extract the value of the closest Frequency from the

oscilloscope CSV data
• Discrepancy is less than 0.1Hz

We identified 87 IM peaks in the audio band up to 5 kHz
for the 2nd to 9th orders. This enabled us to compare the
peak strengths of the measured peaks with the simulated
peak strengths. As discussed for the case of a single tone,
we again tested a polynomial approximation for the mea-
sured transfer characteristics of the IMD. As shown in Fig.
14, no open space is apparent between the overlapped up-
ward and downward hysteresis curves of the transfer char-
acteristics for various IMD frequencies. The polynomial
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Fig. 14. Transfer characteristics of the IMD for distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2
= 50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ in (a), (b), (c), (d), and (e), respectively. The polynomial curve fit is drawn in
each graph.

J. Audio Eng. Soc., Vol. 69, No. 1/2, 2021 January/February 93



INUI ET AL. PAPERS

approximation curve was calculated up to the 9th order via
the least-squares method using all measured data points.

6.1.2 Dependence of Dissonance IMD on Gain
and Starvation: Measurement and Simulation

The measured and simulated spectra of dissonant signals
with distortion knob scale settings of ‘D1 = 0, D2 = 0,’
‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 = 50,’ ‘D1 = 100,
D2 = 0,’ and ‘D1 = 100, D2 = 100’ are shown in Fig.
15(a), (b), (c), (d), and (e), respectively. Please note that
again, LKFS equalization was applied to the spectra. Each
simulated data x denotes the value of a single frequency
bin. By comparing the measured spectra with the simulated
spectra in Fig. 15 it is confirmed that the top 15 IMD peaks
in terms of amplitude appear to match each other well.

To characterize the spectra in terms of significantly large
tones of 400 mVp-p, the correlations between the measured
and simulated peak strengths are plotted in Fig. 16. When
the distortion level for even-order nonlinearities is increased
with the D2 knob, the second-order peaks of f2+/−f1 and
their harmonics of 2(f2+/−f1) become significantly larger,
and the odd-order peaks of 2f2+/−f1 and 2f1+/−f2 decrease
slightly. The match between the measured and simulated
IMD spectra is again fairly good down to approximately
−50 dBV, as in the one-tone case.

6.2 IMD for Consonance
6.2.1 Dependence of Consonance IMD on Gain
and Starvation: Measurement and Simulation

Two tones f1 = 369.99 (F#4) and f2 = 554.37 (C#5) with
a 1:1 amplitude ratio, corresponding to a frequency range
similar to that used in the dissonance experiment, were cho-
sen for the consonance IMD measurements. The measured
and simulated spectra with distortion knob settings of ‘D1
= 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 =
50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ are
shown in Fig. 17(a), (b), (c), (d), and (e), respectively. The
frequency ratio between F#4 and C#5 is approximately 2:3,
yielding a simple spectrum compared with that in the dis-
sonance experiment. The significant new observation is the
relatively clean spectrum for the whole frequency range in
the case of ‘D1 = 100, D2 = 0,’ as seen by comparing Fig.
17(d) with Fig. 15(d). The correlations between the mea-
sured and simulated peak strengths are also plotted in Fig.
18. The deviations are smaller than those in the dissonant
case.

6.2.2 Analysis of the Major Spectrum of IMD
Peaks in the Case of Consonance

The fine frequency ratio between F#4 and C#5 with an
equal temperament is 2.000:2.9967, not an integer ratio
such as the ratio of 2:3 for a pure temperament. The FFT
spectra in the cases of 2f2-f1 (cubic difference tone), f2+f1,
and 3f2-f1 are shown in panels (a), (a’), (b), (b’) (c), and
(c’) of Fig. 19. The panels on the left-hand side correspond
to the ‘D1 = 100, D2 = 0’ (odd-rich) setting, and the pan-
els on the right-hand side correspond to the ‘D1 = 100,
D2 = 100’ (even-rich) setting. The frequency resolution

employed here is 0.5 Hz, which is an adequate value con-
sidering the human-ear frequency sensitivity of 1 Hz, which
is called the just-noticeable frequency difference [27] and
is also equal to one-quarter of an alternative definition of
resolution ( = 4 Hz) called the just-noticeable frequency
modulation. Therefore by using the higher resolution of 0.5
Hz, the consonance IMD spectrum can be analyzed with and
compared to a psychophysical model in which a mechan-
ical simulation is used to model the operation mechanism
of the basilar membrane with fine physical resolution [30].

The frequency combinations corresponding to the sub-
peaks are identified as noted in each panel. It should be
noted that the spectra also contain higher-order harmon-
ics, such as 8f2-10f1 for the main peak of 2f2-f1, 10f1-
5f2 for f2+f1, and 9f2-10f1 for 2f1+f2. The IMD subtone
peaks, which appear at 1 Hz increments between harmonic
peaks, are not harmonics. They are generated by over-
lap of the skirts of adjacent harmonic peaks due to lim-
ited resolution. For example a peak at 738 Hz is gener-
ated by an overlap of harmonic skirts 2f2-f1 and 4f2-4f1 in
panel (a).

The distribution of the subpeak heights changes with
the distortion knob settings; a sharp-pointed spectrum is
obtained for the odd-rich cases of ‘D1 = 100, D2 = 0’
shown in panels (a) and (b), while an elliptical cone-shaped
spectrum is obtained for the even-rich cases of ‘D1 = 100,
D2 = 100’ shown in panels (a’), (b’), and (c’).

Fig. 20 shows the same spectra in the extended frequency
ranges of 20 Hz (a), (a’), 30 Hz (b), (b’), and 40 Hz (c),
(c’). These bandwidths are approximately equal to the unit
frequency steps of �f0.2mm defined by a constant step size
of 0.2 mm on the basilar membrane for maximal stimuli of
approximately 800 Hz, 1 kHz, and 1.5 kHz, respectively, as
defined in [27].

The main property observed in these spectra is symmetry.
A clear symmetric peak can be observed in the spectra of
2f2-f1 (a) and f2+f1 (b) for ‘D1 = 100, D2 = 0’ (rich in odd
harmonics). In contrast the spectrum is asymmetric for other
cases, with the slope on the higher-frequency side being
steeper than that on the opposite side. Additionally the base
of the peak in these frequency ranges is approximately −50
dB from the top of the peak. These features are correctly
simulated.

The masking patterns of narrowband sounds have been
studied for either sinusoids (added sinusoidal tones) or
bands of noise (filtered white noise) in many ways. In
early work, it was considered that the masker signal thresh-
old might be directly related to the amount of excitation
spreading in the cochlea [31,32]. In general, the slopes of
the masking patterns for narrowband noise are very steep on
the low-frequency side compared with the high-frequency
side [27]. However a variety of systematic differences have
been found in the masking shapes between sinusoids and
narrowband noise, although they produce similar long-
term-average excitation patterns [33–35]. Additionally the
thresholds may be influenced by the presence of beats be-
tween the signal and masker [36]. Our results suggest that
the sound changes associated with IMD for consonance
due to even harmonics may be attributable to the spectrum
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Fig. 15. Measured and simulated spectra of the distortion pedal output for the input signal f1 = 369.99 Hz (F#4) and f2 = 587.33 Hz
(D5), with distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 = 50,’ ‘D1 = 100, D2 = 0,’ and ‘D1
= 100, D2 = 100’ shown in (a), (b), (c), (d), and (e), respectively.

shape, depending on the combination of harmonics as well
as the strength.

6.3 IMD Discussion
In summary, it can be seen from these experimental

results on IMD characteristics that the major features of

the phase-compensated transfer function, specifically for
spectra rich in even and odd-order harmonics, can be re-
produced by 9th-order polynomial approximations. The
IMD peak spectrum in the case of consonance shows an
asymmetric shape with a steeper slope on the higher-
frequency side, which is simulated well by the transfer
function.
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Fig. 16. Correlation of the strength of tones between the measured and simulated amplitude for the IMD spectra of the input signal f1

= 369.99 Hz (F#4) and f2 = 587.33 Hz (D5), with distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50,
D2 = 50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ shown in (a), (b), (c), (d), and (e), respectively.
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Fig. 17. Measured and simulated spectra of the distortion pedal output for the input signal f1 = 369.99 Hz (F#4) and f2 = 554.37 Hz
(C#5), with distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50, D2 = 50,’ ‘D1 = 100, D2 = 0,’ and ‘D1
= 100, D2 = 100’ shown in (a), (b), (c), (d), and (e), respectively.
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Fig. 18. Correlation of the strength of tones between the measured and simulated amplitude for the IMD spectra of the input signal f1

= 369.99 Hz (F#4) and f2 = 554.37 Hz (C#5), with distortion knob scale settings of ‘D1 = 0, D2 = 0,’ ‘D1 = 0, D2 = 100,’ ‘D1 = 50,
D2 = 50,’ ‘D1 = 100, D2 = 0,’ and ‘D1 = 100, D2 = 100’ shown in (a), (b), (c), (d), and (e), respectively.
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Fig. 19. Measured and simulated IMD spectra using the transfer function of the distortion knob scale ‘D1 = 100, D2 = 0’: 2f1-f2 (a),
f2+f1 (b), and 3f2-f1 (c), respectively. ‘D1 = 100, D2 = 100’: 2f1-f2 (a’), f2+f1 (b’), and 3f2-f1 (c’), respectively.
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Fig. 20. Measured and simulated IMD spectra using the transfer function of the distortion knob scale ‘D1 = 100, D2 = 0’: 2f1-f2 (a),
f2+f1 (b), and 3f2-f1 (c), respectively. ‘D1 = 100, D2 = 100’: 2f1-f2 (a’), f2+f1 (b’), and 3f2-f1 (c’), respectively.
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Therefore a digital implementation with a 9th-order poly-
nomial approximation is considered to be applicable even
for the dynamic transfer functions to reproduce the non-
linearity of the distortion pedal. However, while the tests
conducted show promise for the polynomial modeling tech-
nique, perceptual tests still need to be conducted before it
can be claimed to be sufficient.

7 CONCLUSIONS

It has been clarified that the well-known “voltage starva-
tion” technique for sound change using a distortion pedal
is a method for controlling the strength of even-order dis-
tortions. This fact has been discovered by investigating the
behavior of a newly developed distortion pedal in which
the supply voltage of the gain OPA is continuously starved.
The effect has been proven by modeling different trans-
fer functions depending on the degree of starvation that
are expressed in terms of the superimposition of even-
order and odd-order terms in a 9th-order polynomial. Here
the error between the measured and simulated spectra is
less than 50 dB. Thus, in the case of IMD, we have suc-
ceeded in identifying all peak IM frequencies associated
with the mathematical formula nf1 + mf2, where −9 <

n < 9 and −9 < m < 9, in a complex spectrum. Espe-
cially for the case of consonance between two tones, it
is considered that the asymmetric IMD spectrum of the
subpeaks will play the role of a set of maskers to gen-
erate the specific sounds associated with voltage starva-
tion. Therefore the 9th-order polynomial model is a can-
didate for an accurate real-time processing method as a
virtual analog model of the transfer characteristics of the
distortion pedal.

Also it is demonstrated that our new analog distor-
tion pedal is useful for improving statistical perception
tests of variations in asymmetric distortion, for which
the available conditions used to be limited [2]. In order
to confirm its effectiveness we are currently construct-
ing a perceptual evaluation scenario with our new dis-
tortion pedal that includes a unit organization for listen-
ers based on the principle of perceptual audio evaluation
[37].
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