VDV-3025-SE SINGLE ENDED OUTPUT TRANSFORMER

TYPE \& APPLICATION

Primary Impedance
Secondary Impedance 0/4/8/16 Ohm
Turns Ratio Np/Ns
-.1 dB Frequency Range [Hz] - [kHz]
-1 dB Frequency Range $[\mathrm{Hz}]-[\mathrm{kHz}]$
-3 dB Frequency Range [Hz$]-[\mathrm{kHz}]$
Nominal Power (1)
Full Power Bandwidth Starting at
Total Primary Inductance (2)
Primary Leakage Inductance to sec.
Effective Primary Capacitance
Saturation Primary Current
Total Primary DC Resistance
Total Secondary DC Resistance
Tubes Plate Resistance
Insertion Loss
Q-factor 2-nd order HF roll-of (5)
HF roll-off Specific Frequency (5)
Quality Factor $=$ Lp/Lsp (5)
Quality Decade Factor (5)
Tuning Factor (5)
Tuning Decade Factor (5)
Frequency Decade Factor $(4,5)$

VDV3025-SE vs02 190612 45-temp

$\mathrm{Raa}=2.491$	[k ${ }^{\text {] }}$
$\mathrm{Rls}=4$	[Ω]
Ratio $=24.957$	[]
$\mathrm{flf}=21.144$	fhf $=23.231$
$\mathrm{fl1}=9.018$	$\mathrm{fh} 1=51.744$
$\mathrm{fl3}=4.59$	$\mathrm{fh} 3=95.769$
$\mathrm{Pn}=13$	[W]
fPnom $=20$	[Hz]
Lp $=20$	[H]
$1 \mathrm{sp}=5.2$	[mH]
Cip $=1$	[nF]
$2 \cdot \mathrm{Idc}=204.316$	[mA]
Rip $=45$	[Ω]
Ris $=0.1$	[Ω]
$\mathrm{rp}=0.7$	[k Ω]
Iloss $=0.183$	[dB]
$\mathrm{Q}=0.494$	[]
Fo $=151.507$	[kHz]
$\mathrm{QF}=3.846 \times 10^{3}$	[]
$\mathrm{QDF}=3.585$	[]
$\mathrm{TF}=5.425$	[]
TDF $=0.734$	[]
$\mathrm{FDF}=4.319$	[]

Rls $=4$
Ratio $=24.957$
$\mathrm{fhf}=23.231$
fh $1=51.744$
$=95.769$
[Hz
[H]
[mH]
[nF]
[mA]
[Ω]
[Ω]
[k Ω] [dB]
: $\mathrm{Q}=0.494 \quad$ []
$\mathrm{Fo}=151.507 \quad[\mathrm{kHz}]$
$\mathrm{QF}=3.846 \times 10^{3} \quad[$]
$\mathrm{QDF}=3.585 \quad[$]
$\mathrm{TF}=5.425 \quad$ []
$\mathrm{TDF}=0.734 \quad$ []
$\mathrm{FDF}=4.319 \quad[$]
(1): calculated and measured under the conditions of applying 0.5^{*} Idc-sat.
(2): $\quad 230$ Volt 50 Hz measurement over the total primary winding
(3): \quad calculated and measured at 1 Watt in Rls; ri and Rls are pure Ohmic (4): \quad defined as $F D F=\log (f h 3 / f \mid 3)=$ number of frequency decades transfered (5): ir. Menno van der Veen; Theory and Practise of Wide Bandwidth Toroidal Output Transformers, 97-th AES Convention San Francisco, preprint (C): copyright Vanderveen 1997, Version 1.3; design date 12-6-2019

